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Abstract 
Nowadays, various remote sensing systems have adopted the use of Unmanned Aircraft Systems (UAVs) due to the 

increasing popularity of drones. Hence, there is a need to develop such methods for the safe landing of aerial drones for 

suitable landing site identification. This research focuses on developing a Machine Learning (ML) based framework for 

identifying suitable places to ensure the safe landing of drones. An Autonomous Safe Landing of Aerial Drone Vehicles 

(ASLAD) framework, a novel and innovative approach, was proposed in this regard. This framework was based on the 

Self-training Semi-supervised Learning Model (SSLM). For experiments, high-resolution aerial images were taken. All 

the images were resized using image resizing techniques. Image splitting technique was used to split the dataset into 

labeled and unlabeled classes. Experiments showed that the proposed model produced promising results with an accuracy 

of 96.75% and an F1-score of 94.45%. The results showed that the proposed framework can identify suitable places for 

the safe landing of aerial drones. 
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1. INTRODUCTION 

Reliable autonomous drone technology has 

become more important to detect safe landing 

places nowadays. Drones are used in different 

operations such as surveillance, inspection, 

deliveries, and detection. These operations and 

applications must develop a reliable system to 

identify obstacles and prevent accidents. This 

system will minimize the risk of drone crashes 

and damages. Adopting these systems may 

reduce the risk of potential harm to people and 

property. Drones, also known as unmanned 

aircraft, operate from a distance without having 

any passengers inside (Seydoux, 2014). Drones 

have become more valuable unmanned aircraft 

in a wide range of aviation applications due to 

their ability to conduct extended flights with 

controlled altitude and speed. The major focus 

of this study is to consider the fact of 

identifying appropriate landing places by 

drones. This refers to term firma, which means 

operating both unmanned and manned aircraft 

in dynamic environments. There is a system that 

can identify secure landing space by drones. 

This system autonomously identifies all 

obstacles around the defined routes of 

unmanned aircraft  

 

 

(Giordan, 2020). By using this technology, 

drones can land securely without any human 

intervention. These systems consist of different 

strong sensors and high-definition cameras to 

collect necessary information about the landing 

place and its surroundings. This includes 

information about object locations, the drone’s 

altitude, and landing place coordinates. This 

information ensures that drones can constantly 

identify safe landing places in all evolving 

conditions (Vlantis, 2015). The adoption of 

these advanced technologies involves fear about 
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the trustworthiness of the obtained information  

about a safe landing place. This involves a 

drone onboard processor responsible for 

analyzing the extracted information and 

generating secure, reliable landing routes for 

unmanned aircraft (Nex, 2022). False 

information may be easily spread over social 

media through the internet. This makes it 

difficult to identify and locate credible 

information. This issue raises a questionable 

objection to adopting and implementing an 

autonomous aircraft safe landing system to 

whether the system can identify a secure 

landing place or not by using this information 

(Anderson, 2017). The role of the media is to 

spread information regarding the safe landing 

of unmanned aircraft. It is the primary 

responsibility of media houses and 

organizations to ensure the authenticity of the 

information before spreading it around. Thus, 

there is a need to implement strict fact-finding 

procedures to stop the dissemination of false 

information. Furthermore, public awareness 

programs about modern technologies can 

reduce the fear of disseminating false 

information around the people (Kovacova, 

2022). 

1.1 Autonomous Safe Drone Landing Detection 

(ASDLD) 

This state-of-the-art technology empowers 

drones to achieve safe and precise landings 

autonomously, eliminating the need for human 

intervention. The system closely monitors the 

drone's location and surroundings using a 

variety of sensors, cameras, and sophisticated 

software programs. It maintains a constant 

watch to ensure the drone's safety and 

performance. (Abdelmaboud, 2021). The 

system looks at important things like wind 

direction, speed, air pressure, exactly where the 

landing zone is, and any obstacles that might be 

there. It makes smart decisions using real-time 

data it collects to land safely. The system 

controls the drone's flight path and landing 

process, guiding it along the safest route for an 

accurate, liable landing. This cool technology 

makes drone operations much safer and more 

effective for tasks like delivery, surveillance, 

and inspections. It analyzes key factors like 

wind patterns, atmospheric conditions, the 

precise landing spot, and potential obstructions. 

Then, it uses this live data to choose the best 

course, completely managing the drone's flight 

and touchdown for a secure, precise outcome. 

This cutting-edge capability greatly improves 

safety and performance across drone 

applications from package transport to 

monitoring and inspections. (Mohsan S. A., 

2023). 

The tech that allows drones to work alone is 

quite useful. It makes drones fly independently 

for delivery, inspecting stuff, watching areas, 

and doing risky jobs safely. When drones can 

detect safe landing spots independently, there's 

less chance of human errors, keeping drones 

secure. These drones land accurately without 

people controlling them, increasing drone use 

across many situations and applications. This 

advancement could shake up the drone industry. 

It opens more possibilities for safe, efficient 

drone operations in various workplaces and e-

nvironments (Mohsan S. A., 2022).  

Drones can land safely on their own without 

help from people. They use tools like GPS and 

height sensors to get details. The drone's 

computer checks this info to adjust how it 

moves and lands. It ensures the landing is 

smooth and safe, without you needing to do 

anything (Politi, 2022). A safe landing is crucial 

for drones operating in challenging environme-

nts. This technology aims for reliable, secure 

landings. It reduces accidents during landing 

procedures, increasing drone operation safety 

and reliability. Drones with autonomous safe 

landing can navigate complex settings, land 

independently, and xpand applications while 

prioritizing safety. The main objective – 

ensuring dependable, secure landing e-

xperiences, even in demanding, ever-changing 

situations. By reducing landing accident 

potential, this greatly elevates overall safety and 

reliability. Equipped with this capability, drones 

adeptly maneuver through complex settings, 

achieving safe, independent landings. It 
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expands potential applications while strongly 

emphasizing safety. (Lange, 2009). 

The self-driving safe landing for drones has 

steps. It uses cameras, sensors, math programs. 

First, it gets info on the area around it. Then, it 

finds the best path to land. As it moves, it keeps 

changing the path to land safely and right on 

target. This process is illustrated in Figure 1. 

 

 
Figure 1: Autonomous Safe Landing Detection System 

Figure 1 shows how the system works. It splits 

landing paths into "Yes" for safe, and "No" for 

unsafe. The system uses sensor, camera, and 

algorithm data to decide quickly. This ensures 

a safe, reliable drone landing. Drones are 

popular due to being cost-effective, accessible, 

versatile, effective, and safe. This makes them 

useful for many applications (Zhu, 2019). 

Drones play a crucial role in gathering crucial 

data from distant and hard-to-reach areas where 

human presence is not feasible for efficient 

tasks. Their remote control and accessibility 

through smartphones allow them to quickly 

access densely populated locations without 

requiring human involvement, leading to 

savings in time, resources, and energy. This 

flexibility has resulted in their widespread use 

in four primary sectors: commercial, personal, 

military, and emerging technological 

applications (Emimi, 2023). 

Ensuring safe drone landings is a critical part 

of drone technology. Drone operations become 

safer and more reliable with this capability. 

This feature is crucial for the effective use of 

drones (Hussein, 2021). The integration of self-

landing detection allows drones to fly faster and 

more accurately when landing, reducing the 

need for human control. This technology 

enables drones to land safely on their own, 

improving their efficiency and reliability. Aerial 

image segmentation has involved evaluating 

feature extraction methods, like analyzing color 

and texture properties (Faheem, UAV 

Emergency Landing Site Selection System 

using Machine Vision, 2015). Computer vision 

and feature extraction techniques help drones 

identify suitable landing locations. These 

methods analyze the captured images to 

distinguish between good and bad landing areas. 

The landing detection platform assesses the 

image data, extracting important features, 

objects, and patterns using feature extraction. 

This allows drones to predict their performance 

based on trained datasets, even in unfamiliar 

landing situations. The vision system focuses on 

segmenting images to pinpoint appropriate 

landing spots independently. 

The research on safe landing techniques for 

drones has been thoroughly examined. 

Researchers have explored various methods to 

ensure a smooth and controlled landing for these 

aerial vehicles. The discussion covers the key 

findings and approaches outlined in the existing 

studies on this topic. 

2. Literature Review 

Researchers have used diverse models, 

including deep learning (DL) and machine 

learning (ML), to predict safe landing 

conditions for unmanned aerial vehicles 

(UAVs). ML, DL, and image processing 

approaches greatly assist data analysis, feature 

extraction, and accurate map generation. The 

primary objective is to enhance drone 

intelligence, enabling independent decision-

making and safe landings. Researchers have 

explored viable methods to increase the 

accuracy of identifying safe landing spots, 

ultimately aiming to improve drone 

performance and safety. This section examines 

the research contributions to ensure UAVs land 

safely. 
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In 2023, Haotian et al. conducted study that 

specifically examined a Multi-level Adaptive 

Safety Control architecture system designed 

for UAVs.This technique enables UAVs to 

effectively carry out safety maneuvers, even in 

very unpredictable scenarios. Notably, it can 

adapt to different landing phases and was 

carefully made to deal with uncertainties in real 

time. This study's findings are essential for 

enhancing the safety and reliability of drone 

flights, particularly during critical landing 

procedures. The insights gained can help 

improve operational protocols and ensure the 

safe operation of these unmanned aerial 

vehicles (Gu, 2023). In 2023, Kumar and his 

team developed a reliable Computer-Aided 

Design (CAD) method sor landing drones with 

parachutes. They built a CAD model, did 

Computational Fluid Dynamics (CFD) 

simulations, and then improved the model 

based on what they learned from those 

simulations (Kumar, 2023). The researcher, 

Ghous, explored techniques to automatically 

identify suitable landing spots for drones in 

2023. They considered factors like ground 

surfaces and utilized image processing 

methods. Accurate detection of landing sites is 

crucial as drones become more automated, 

regardless of their size. To find the best landing 

places, the onboard vision sensors collect data. 

This research highlights the need for safe and 

automated drone landings in the growing drone 

industry by evaluating current methods, 

successes, and areas for potential improvement 

(Ghous, 2023). 

 Guerin et al., 2022 research introduced a 

Segmentation-based approach for secure 

landings, employing the EL (Emergency 

Landing Approach) model. Through their ML 

Runtime Monitoring (MLRM) technique, they 

achieved a remarkable success rate of 99.7% 

[18]. In 2022, Pinkovich et al. introduced a 

Bayesian network with vision-based 

segmentation for making decisions involving 

multiple criteria (MCDM) to ensure the secure 

landing of aerial drone vehicles. The decision-

making process considers a trial successful 

when its value exceeds 99.0% [19]. Ariante et 

al. presented a 360-point sampling SLAD 

method for RPLIDAR in 2022, incorporating 

vision-based techniques. This method yielded 

measurements with distance accuracy points of 

1300 mm [20]. Meanwhile, Liu et al. in 2022 

introduced a dual-model DL approach aimed at 

ensuring the safe landing of drone aircraft. They 

conducted their training on the Aerospace 

dataset for 150 epochs and incorporated 

semantic segmentation as a preprocessing step. 

The Image Semantic Segmentation Model 

showed a significant improvement in 

effectiveness, reaching an impressive 68.88% 

increase.[21]. Tovanche-Picon and their team 

conducted a scientific study in 2022 to address 

safety concerns with unmanned aerial vehicles 

(UAVs). They developed a strategic approach 

using a Fusion Sensor Technique and a Vision-

Based Algorithm. This system achieved an 

impressive 86% success rate in dynamic 

situations with 20% moving parts. 

The studies provide valuable insights into using 

vision-based techniques to make UAV landings 

safer and more efficient. These findings can 

help improve the overall landing process, 

making it more secure and streamlined. By 

understanding the insights from these studies, 

researchers and engineers can develop better 

systems and methods to enhance the safety and 

efficiency of UAV operations [22]. 

Tomita and his colleagues used Bayesian 

principles to develop deep learning methods in 

their 2021 research. Utilizing these techniques, 

they were able to achieve a 61% accuracy level 

(Tomita, 2021). The 2021 study by Turan et al. 

introduced a new image processing technique 

focused on detecting edges and identifying 

landing zones in emergency situations. Their 

method achieved an impressive 100% accuracy 

rate, with re-call and precision values of 81.2% 

and 79.1%, respectively, even at the lowest 

points. (Turan, 2021).  

Iiyama and their team developed training mode-

ls in 2021 that successfully landed in an 

impressive 94.8% of cases. They used the 

Delayed Deep Deterministic Policy Gradient 
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(TD3) method to continuously update the safe 

landing areas and ensure they remained free of 

hazards (Iiyama, 2021). The 2021 study by 

Brockers and colleagues explored a vision-

based method to reconstruct detailed 3D re-

presentations. This approach allowed them to 

collect highly accurate depth measurements. 

By using this technique, they were able to 

achieve a 100% detection rate in identifying 

safe landing zones (Brockers, 2021). Klos and 

colleagues devised an innovative approach in 

2020 to identify suitable emergency landing 

sites. They employed pre-trained multimodal 

artificial neural networks using transfer 

learning. After rigorous testing and 

optimization, the model achieved an 

impressive peak accuracy rate of 99.66%. 

(Klos A. , 2020). In the year 2020, a team led 

by Wilhelm and their colleagues developed a 

deep learning framework specifically designed 

to classify images of the Martian surface. Their 

work aimed to provide a reliable and efficient 

way to analyze the visual data captured from 

the Red Planet. The system that was studied by 

them has an overall performance level of more 

than 90% and offers strong support for 

continuous site investigation. It also displays 

outstanding predictive abilities (Wilhelm, 

2020).  

In 2020, Sikdar et al. presented a clustering 

method that uses suitable stereo pairings to 

randomly derive drone flight trajectories from 

a single camera. The total accuracy of all 

approaches, despite the variety of strategies 

used, was found to be 0.860 (Sikdar, 2020).  

In 2020, Klos et al. investigated a method for 

data fusion that included a digital surface 

model. After evaluating a number of models, 

the ResNet-18 model earned the highest test 

accuracy at 99.709%, with the Wide-ResNet-

50-2 model coming in second at 99.801%, and 

the AlexNet model achieving an astounding 

99.97% (Klos, 2020). In 2019, Wubben et al. 

launched ArduSim simulation approaches with 

the goal of lowering landing mistakes by 

around 96% and improving landing accuracy to 

a level similar to GPS-based landings 

(Wubben, 2019).   

In 2018, Hinzmann et al. proposed a vision-

based segmentation technique for aerial 

vehicles that integrates Coarse Depth 

Measurements, Distance Transformation, and 

the Random Forest (RF) Method. The RF 

technique delivered an exceptional 95% 

accuracy rate in areas with greater motion or 

velocity. (Hinzmann, 2018),  The research led 

by Fraczek and colleagues in 2018 presented a 

method that utilized Digital Image Processing 

Techniques to assess the effectiveness of 

Decision Trees (DT) and Support Vector 

Machines (SVM) in the context of vision-based 

segmentation for safe landing site selection. 

Their experimental results demonstrated that the 

performance regularly exceeded 80% across all 

100 test cases. (Fraczek, 2018).  

Earlier research by Zhao et al. in 2017 

introduced an image segmentation technique 

that identified key geometric patterns, enabling 

the detection of a wide variety of hazards. The 

overall performance score for this technique 

was found to never drop below 0.983. (Zhao, 

2017). In 2017, Coombes et al. suggested 

employing the MONTE CARLO simulation 

method to assess emergency landings in both 

stable and windy conditions. The outcomes 

revealed that the average error in height loss was 

relatively small when contrasted with the total 

height loss, amounting to only 5% (Coombes, 

2017).  

Furthermore, in 2016, Kang and their team 

introduced a feature extraction method centered 

on the pixel analysis convex hull feature 

approach. However, it's worth noting that the 

accuracy of the model during its middle phase 

decreased by 90.09% due to the feature 

extraction methods employed. (Kang, 2016).  

In 2015, Desaraju et al. introduced a highly 

efficient feature extraction approach, achieving 

a remarkable success rate of over 90% in 

accurately identifying landing zones. Notably, 

this method is notable for its impressively low 

false positive rate, which is less than 0.05% 

(Desaraju, 2015). During a similar timeframe in 

2015, Faheem dedicated their research 
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endeavors to creating a Machine Vision-based 

system tailored for the selection of UAV 

Emergency Landing Sites. Their investigation 

primarily centered on the classification of 

viable and non-viable aerial vehicle segments 

through the application of ML algorithms and 

feature extraction techniques in computer 

vision. The results of their study demonstrated 

a notable accuracy of 91.6%, all achieved 

within a short processing time (Faheem, UAV 

Emergency Landing Site Selection System 

using Machine Vision, 2015). Furthermore, a 

study conducted by Dehshibi et al. in 2015 

introduced a machine vision approach based on 

K-Nearest Neighbors (KNN) segmentation. 

This method involved the extraction of features 

from HSV color and Gabor texture. HSV and 

Gabor filters exhibited the most outstanding 

performance of the various feature extraction 

methods examined. However, it's important to 

note that the KNN Classifier technique, as a 

whole, achieved a remarkable accuracy rate of 

97% (Desaraju, 2015), on the other hand, in 

2015, Sosnowski et al. proposed an advanced 

method for evaluating and selecting safe 

landing locations. Their method significantly 

decreased the possibility of incorrectly 

identifying fake and sharp edges, improving the 

approach's overall reliability and producing 

outstanding results. (Sosnowski, 2015).  

A comprehensive analysis of the various 

methods and models used to choose safe 

landing places was carried out in the preceding 

section. We examined the datasets used in 

previous studies. The next section will explore 

the datasets and methods we employed to 

create our innovative framework for 

identifying secure drone landing sites. 

3. Materials and Methods 

This section will explain the methods and 

techniques used in our framework for choosing 

secure landing spots for drones. To reach our 

research objectives, we'll describe the 

methodical approach to gathering, processing, 

and analyzing data. 

3.1 Semi-Supervised Learning 

Semi-supervised learning is a technique in 

machine learning where algorithms are trained 

using a mix of labeled and unlabeled data. This 

approach enables the model to learn from 

structured (labeled) information and 

unstructured (unlabeled) data, potentially 

enhancing its performance compared to using 

only labeled data (Amjad, 2023). This approach 

combines the key ideas of supervised and 

unsupervised learning. Supervised learning 

means the system learns from labeled data. 

Unsupervised learning means the system learns 

from unlabeled data. There are two main types 

of semi-supervised learning (Altexsoft, 2022).  

3.2 Inductive Semi-Supervised Learning 

The method uses a tiny bit of labeled data along 

with a larger amount of unlabelled data to steer 

the algorithm's learning. This collaborative 

approach, often called "self-training," lets the 

algorithm guess for new, unknown data. The 

algorithm can expand its understanding and 

make more precise forecasts using labeled and 

unlabelled data. 

3.3 Transductive Semi-Supervised Learning:  

In this case, the algorithm uses labeled data to 

predict different instances of unlabeled data 

within the same dataset. This method is often 

called "co-training". 

The dataset is used in the semi-supervised 

training phase for binary classification with the 

ResNet18 model. At first, only the labeled 

instances are used to train the model. Later, 

artificial labels are created and incorporated into 

the training process for the next phases, 

effectively using the information in the 

unlabeled data. Since the dataset contains high-

quality images, a preprocessing technique is 

applied to prepare the data for training. 

The dataset is divided into two classes: labeled 

and unlabeled. The labeled class has fewer data 

instances compared to the unlabeled class. The 

labeled data is used to train the model with 

classifiers like ResNet18, VGG19, and VGG16 

to start the process. These classifiers play an 

important role in the training. 

This new dataset combines the original labeled 

data with the generated pseudo labels and is 

retrained using the ResNet18 classifier. The 
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Adam optimizer is employed throughout the 

training epochs to fine-tune the model. By 

adopting this semi-supervised learning 

approach and harnessing information from 

labeled and unlabeled data, the model can 

capitalize on the larger data pool, potentially 

enhancing its overall performance and 

generalization. A visual representation of this 

approach is shown in Figure 2. 

Figure 2 illustrates the proposed framework, 

which is the basis for substantiating and 

validating the research theory. This framework 

not only introduces and outlines the theory 

being investigated but also provides a rationale 

for the existence of the research problem. It 

offers a distinct perspective that aids in 

comprehensively assessing the subject matter. 

Various preprocessing techniques have been 

integrated within our envisioned framework to 

address and successfully resolve the research 

problem. Pre-processing involves methods and 

techniques that are useful to produce data for 

analysis and ML algorithms. Without involving 

pre-processing, the performance of the 

proposed framework may reduced. 

 3.4 Preprocessing 

Preprocessing plays a vital role in the 

preparation of data for experiments. It involves 

methods and techniques to resolve related 

issues to produce meaningful data for 

experimental analysis (Usama, 2022). The 

significance of preprocessing in our proposed 

framework is that it involves necessary steps to 

produce data suitable for analysis and ML 

Algorithms.  

a) Data Cleaning 

Data cleaning involves pre-processing methods 

such as Noise Removal, Missing values 

management, and elimination of outliers. This 

pre-processing step is crucial to enhance the 

quality of data. This provides a form of data 

that may improve the results' accuracy. 

b) Feature Scaling 

Feature Scaling or normalization is one of the 

most prominent pre-processing techniques 

which improves the performance of ML 

algorithms such as gradient descent or K-

means clustering. This involves assigning a 

common scale to all features. It also prevents a 

single feature to be dominant among all 

features.  

c) Feature Selection 

Feature selection is one of the crucial steps of 

preprocessing, which involves selecting useful 

features. It involves the reduction of the 

complexity of data. This process may enhance 

the performance of ML models by selecting 

prominent features. 

d) Data Transformation 

Preprocessing involves a very important step 

called data transformation. It involves the 

conversion of data into a form acceptable for 

analysis. In this step, normalization of data is 

performed using skewed distribution. In this 

step, categorical variables are converted into 

numerical values. The preprocessed 

transformed data grantees effective results 

produced by different ML algorithms. 

3.5 Dataset 

In this research, two publicly accessible datasets 

sourced from Kaggle 

(https://www.kaggle.com/) are employed. A 

dataset is typically a compilation of data used 

for various purposes, such as analysis, research, 

and ML. These datasets contain high-resolution 

images categorized into training, testing, and 

validation sets, each representing different 

landing areas. The study's primary aim is to 

create a model capable of predicting safe 

landing areas for drones by leveraging patterns 

and features extracted from the data. 

a) Dataset 1 

This dataset is tailored for image classification 

tasks, where the objective is to classify images 

based on the provided labels. The dataset 

comprises 2343 images, each with dimensions 

of 3000 x 4000 x 3, representing the color 

channels. These images are distributed across 

three subsets: training (1455 images), validation 

(450 images), and test (448 images). The 

training set contains 1455 images, with 398 

having labels and 1047 lacking them. The 

classification task involves sorting the images 

into two classes: "Flooded" and "Non-Flooded," 

https://www.kaggle.com/
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each further divided into "YES" and "NO" 

categories. To balance efficient processing and 

preserve essential information, the image 

dimensions have been reduced from 3000 x 

4000 to 300 x 400. The Flood Net Challenge 

dataset used in the EARTHVISION 2021 

competition has 2343 images. Each image 

originally had dimensions of 3000 x 4000 with 

3 color channels. The images were resized to 

300 x 400 to process them more efficiently 

while retaining crucial information. The data t 

is divided into three sets: a training set with 

1455 images, a validation set with 450 images, 

and a test set with 448 images. Out of the 

training set, 398 images have associated class 

labels, while 1047 images remain unlabeled. 

 

 
Figure 2: Semi-supervised Framework for safe landing 

of UAVs. 
Table 1: Data Description of Dataset 1 

Attribute Description 

Dataset Name FloodNet Challenge 

Dataset type dataset of flood events 

Image Size 512 x 512 pixels 

Dimension 3000 x 4000 x 3 

Number of 

images 

2343 

Images format GeoTIFF 

Annotation GeoJSON 

format 

Annotation 

type 

Polygon 

Annotation 

classes 

Flooded area, no flooded area, 

uncertain area 

Geographic 

coverage 

Various 

Date Range Various 

Image source Copernicus Sentinel-1 SAR images 

Label source Automatic algorithm and human 

annotations 

License Creative Commons Attribution-Non-

Commercial-Share Alike 4.0 

International 

Dataset Size 8.33GB 

b) Dataset 2 

The UAVid dataset is specially designed for 

image classification tasks, focusing on urban 

areas. The dataset includes a model with an 

attention mechanism, an encoder network, and a 

decoder network. The encoder network uses 

multiple convolutional layers to gradually 

reduce the spatial dimensions of the input image 

while increasing the number of feature 

channels. On the other hand, the decoder 

network works in the opposite direction, 

gradually reducing the number of feature 

channels while expanding the spatial 

dimensions of the image. An attention 

mechanism is used between the encoder and 

decoder networks to highlight the important 

attributes of each pixel in the image. 

This dataset consists of high-resolution images 

from UAV footage, all in 4K resolution. Its 

primary application is semantic segmentation, 

which involves classifying each pixel in an 

image into one of eight item categories. 

Initially, the dataset included 200 training 

photos and 70 validation images. To enhance 

diversity and expand the dataset's size, an 

additional 600 images were introduced. These 

supplementary images encompass 200 from the 

original UAVid dataset (normal UAVid 

images), 200 new images with shifts and noise 

added, and 200 new images with random flips 

and contrast adjustments. This augmentation 

process enhances the model's ability to 

generalize and perform well by exposing it to a 

broader range of data variations. 
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Table 2 below summarizes the contents of the 

UAVid dataset, specially designed for image 

classification tasks, particularly within urban 

environments. The dataset comprises a total of 

870 high-resolution images captured using 

UAVs. 

 

Table 2: Data Description of Dataset 2 
Attribute  Description 

Dataset Name UAVid 

Dataset type Remote sensing dataset of UAV 

(drone) videos 

Resolution 1920X 1080 pixels 

Number of 

videos 

20 

Total Duration 63 minutes 

Geographic 

coverage 

Various 

Date Range Various 

Video format MP4 

Annotation 

format 

XML 

Annotation  Bounding Box 

Object 

Categories 

8 

Annotation 

classes 
 Building  

 Road  

 Static car  

 Tree  

  Low vegetation  

 Human  

 Moving car 

 Background clutter 

Label Source Human annotations 

License Creative Commons Attribution 4.0 

International 

Dataset Size 12 GB 

The graphical representation of the UAVid 

dataset is illustrated in Figure 1 as follows. 

 
Figure 3: Graphical representation of sampling for 

Dataset 2 (Lyu, 2018) 

4. Results and Discussion 

In this section, we will perform experiments on 

the meticulously prepared datasets using 

various tools and platforms. The datasets have 

been subject to preprocessing techniques to 

tailor them for our model's requirements. These 

preprocessing steps involve standardizing the 

dimensions of all images through scaling and 

resizing. Additionally, any redundant data from 

the image borders has been eliminated via 

center cropping. Moreover, the pixel intensities 

across the images have been normalized to 

establish a consistent range. 

Preparing the dataset commences by splitting it 

into two sections: labeled and unlabeled. 

Typically, the labeled set contains fewer images 

than the unlabeled set. A classifier generates 

pseudo labels for the unlabeled images in the 

initial phase. This classifier utilizes the 

available labeled data to assign provisional class 

labels to the unlabeled images based on their 

predicted classes. A semi-supervised method is 

also applied to create pseudo-masks for the 

unlabeled images. These masks are crucial in 

guiding the model to extract more meaningful 

insights from unlabeled data during training. 

The model training commences with the labeled 

examples, employing the Adam optimizer for a 

predefined number of epochs. This initial phase 

uses the labeled data to establish a robust 

foundation for the model's learning. 

Subsequently, the previously generated pseudo 

masks are integrated with the labeled data for 

further model retraining. During this stage, the 

model undergoes training once more, but this 

time with the inclusion of pseudo-labeled data, 

effectively expanding the labeled dataset. 

The extended dataset, now featuring pseudo-

labeled data, is used for additional training 

epochs, enhancing the model's performance and 

generating more accurate predictions for the 

unlabeled images. This semi-supervised 

approach, which combines labeled and pseudo-

labeled data, enables the model to leverage the 

knowledge extracted from the unlabeled data 

and the labeled examples to enhance its 

predictions and overall performance. 

In the experiments section, we systematically 
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altered individual parameter values, one at a 

time, while maintaining the other parameters 

constant. For example, if we modified the 

epoch parameter, we ensured that all other 

parameters remained the same for that 

experiment. In each experiment, we recorded 

the counts of real positives, real negatives, false 

positives, and false negatives from the 

classification results. These values were 

utilized to create a confusion matrix, 

comprehensively analyzing the model's 

performance. 

By leveraging the information within the 

confusion matrix, we calculated several vital 

metrics, including accuracy and the F1 score. 

The accuracy metric gauges the overall 

correctness of the model's predictions, while 

the F1 score considers both precision and recall 

to evaluate the model's effectiveness. 

4.1 Dataset 1 with Resnet18 

We performed numerous experiments utilizing 

the ResNet 18 classifier, adjusting the number 

of epochs from 5 to 30. The epoch size denotes 

how often the model processes the entire 

dataset during training. We charted the model's 

accuracy at each epoch size, creating a graph 

that allowed us to visualize how accuracy 

fluctuates with varying training iterations. We 

performed numerous experiments utilizing the 

ResNet 18 classifier, adjusting the number of 

epochs from 5 to 30.  

Table 3: Results using Resnet-18 
Epoch Accuracy F1 Epoch Accuracy F1 

0 0.9598 0.9608 0 0.9598 0.9608 

2 0.9598 0.9815 2 0.9598 0.9815 

4 0.9146 0.7302 4 0.9146 0.7302 

6 0.8693 1.0000 6 0.8693 1.0000 

8 0.9648 0.9945 8 0.9648 0.9945 

10 0.9669 0.9670 10 0.9669 0.9670 

 

The epoch size denotes how often the model 

processes the entire dataset during training. We 

charted the model's accuracy at each epoch 

size, creating a graph that allowed us to 

visualize how accuracy fluctuates with varying 

training iterations 

Due to the substantial class imbalance, the 

model struggles to attain a high F1 score during 

training at various epochs, 0, 2, 4, 6, 8, and 10, 

when working with the labeled dataset. 

However, by the 10th epoch, the F1 score 

reaches an impressive 98.15% for the unlabeled 

data. 
 

 
Figure 5: Graphical Representation of Results 

4.2 VGG16 

We utilized VGG16, a well-known 

convolutional neural network in our semi-

supervised learning approach with labeled data. 

We monitored the F1 score and accuracy at 

different epochs, ranging from 0 to 6, to monitor 

the model's development. This gave us insights 

into how effectively the model adapted from the 

labeled data and enhanced its predictions over 

time. Such observations guided us in making 

informed decisions to achieve optimal results. 

 

 

Table 4: Results using VGG-16 
Epoch Accuracy F1 

0 0.6951 0.6951 

1 0.7886 0.7536 

2 0.8192 0.7871 

3 0.8985 0.8383 

4 0.9311 0.8785 

5 0.955 0.9106 

In the first epoch (epoch 0), the accuracy and F1 

score hold the same value, signifying the 

model's initial performance. This information is 

depicted in the figure, and as training advances 

through subsequent epochs, we can track the 

evolving accuracy and F1 score. These accuracy 

and F1 score changes provide insights into the 

model's learning and performance over time. 
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Figure 6: Graphical Representation of Results 

The graph exhibits F1 scores on the y-axis and 

accuracy on the x-axis. In the graph, the yellow 

line, identified as F1-Train-alpha, consistently 

holds a constant value of zero across every 

point on the plot. 

4.3 VGG19 

We used VGG-19, a pre-existing neural 

network, for further training on new data 

through a semi-supervised learning method. 

We tracked the F1 score and accuracy at 

different training stages - 0, 2, 4, 6, 8, and 10 

epochs - which produced varied results. 

Table 5: Results using VGG-19 
Epoch Accuracy F1 

0 0.8113 0.8077 

2 0.7799 0.7464 

4 0.9511 0.9085 

6 0.9717 0.9728 

8 0.9843 0.9846 

10 0.9863 0.9876 

The VGG-19 model achieved an impressive 

accuracy and F1 score of 98.63% in our 

experiments. The visual results demonstrate the 

model's outstanding performance after 

retraining on new datasets using semi-

supervised learning techniques. This highlights 

the effectiveness of VGG-19 in image 

classification tasks, demonstrating its 

capability to provide highly accurate 

predictions for the given dataset.. 
 

  
Figure 7: Graphical Representation of Results 

 

The graph depicts F1 scores on the y-axis and 

accuracy on the x-axis. In the graph, the yellow 

line, labeled as F1-Train-alpha, consistently 

holds a value of zero at every data point 

4.4 Dataset 2 with Resnet18 

We conducted experiments using ResNet 18, 

involving both the data's initial training and 

subsequent retraining. We tested different epoch 

sizes during these experiments, ranging from 0 

to 199. The graph illustrates accuracy on the Y-

axis and points on the training dataset, or the F1 

score, on the X-axis. We can discern how the 

model's performance evolves with different 

epoch sizes by examining the results. This 

analysis aids in identifying the optimal 

configuration that ensures accurate predictions 

for our image classification task. 
 

Table 6: Results using Resnet-18 
Epoch Accuracy F1 

0 0.6875 0.7619 

50 0.9375 0.9412 

100 0.9375 0.9231 

150 0.9275 1.0000 

199 0.9875 0.4000 

The model encountered challenges in achieving 

a high F1 score during training across different 

epochs (0, 50, 100, 150, and 199) due to a 

substantial class imbalance within the labeled 

dataset. However, at epoch 150, the model 

exhibited exceptional performance, attaining a 

perfect F1 score of 100% on the new dataset. 

The visual representation in the figure 

effectively illustrates these findings, 

emphasizing the model's capability to 

effectively address class imbalances at the 
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specified epoch. 
 

 
Figure 8: Graphical Representation of Results 

The graph, F1 scores are plotted on the y-axis, 

while accuracy is represented on the x-axis. 

Across each data point, the persistent yellow 

line signifies that F1-Train-alpha remains 

consistently at zero. 

4.5 Dataset 2 with VGG16 

To enhance the performance of the ResNet 18 

classifier, we implemented retraining by 

incorporating VGG16, a well-known 

convolutional neural network designed for 

image classification tasks. This semi-

supervised learning approach involved 

utilizing the labeled data to boost the 

classifier's predictive abilities, capitalizing on 

the strengths of both VGG16 and ResNet 18 

models. 

Table 7: Results using VGG-16 
Epoch Accuracy F1 

0 0.3750 0.2875 

50 0.6875 0.5455 

100 0.8125 0.8000 

150 0.7500 0.8000 

199 0.7800 0.8000 

We collected data on the F1 score and accuracy 

at different epochs, specifically at epochs 0, 50, 

100, 150, and 199, which produced diverse 

outcomes. These results are visually 

represented in the accompanying figure. 

 

 
Figure 9: Graphical Representation of Results 

The graph exhibits F1 scores along the y-axis 

and accuracy on the x-axis. Within the graph, 

the yellow line signifies the training accuracy, 

which exhibits variation at each data point.  

4.6 Dataset 2 with VGG19 

We employed VGG-19, a pre-trained neural 

network, to undergo retraining on fresh datasets 

via a semi-supervised learning approach. 

During this process, we documented the F1 

score and accuracy at distinct epochs, 

specifically at 0, 50, 100, 150, and 199, resulting 

in differing outcomes for each scenario. 

Table 8: Results using VGG-19 
Epoch Accuracy F1 

0 0.5000 0.3333 

50 0.8750 0.8333 

100 0.9375 0.9333 

150 0.5625 0.2222 

199 0.9675 0.9445 

The considerable class imbalance within the 

labeled dataset presents hurdles in attaining a 

high F1 score at various epochs during training 

(0, 50, 100, 150, and 199). Nonetheless, at 

epoch 199, the model attains its peak accuracy, 

reaching an impressive 93.75% and a 

remarkable F1 score of 94.12% for the new 

dataset. These results underscore the model's 

capacity to manage imbalanced data and deliver 

precise predictions effectively. This is vividly 

illustrated in the accompanying figure, 

providing a visual representation of these 

findings. 
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Figure 10: Graphical Representation of Results 

The graph illustrates F1 scores along the y-axis 

and accuracy on the x-axis. The fluctuating 

green line within the graph represents the 

training accuracy at each data point. 

4.7 Comparison with Existing Methods 

Our model achieved exceptional results on the 

dataset, delivering an accuracy of 96.69% and 

an impressive F1 score of 96.70%. Our model 

has demonstrated superior performance in 

image classification tasks compared to other 

methods. These findings highlight the 

effectiveness and versatility of our approach 

across various image classification 

applications.. 

Table 9: Comparison of Proposal Model with 

Existing Models 
Model Accuracy F1 Score 

ResNet 50 (He, 2016) 97.37% 93.69% 

InceptionNetv3 (Tan, 2019) 99.03% 84.38% 

Xception (Khose, 2021) 99.84% 90.62% 

ResNet 18 (Proposed) 96.69% 96.70% 

VGG16 (Proposed) 96.75% 94.45% 

VGG19 (Proposed) 98.63% 98.76% 

This study focuses on developing an 

autonomous drone landing system that can 

operate safely without human intervention. The 

approach involves using semi-supervised 

learning with the Flood Net image dataset, 

which contains high-quality images. The 

dataset is divided into labeled and unlabeled 

classes, with the labeled data used to train Re 

sNet 18 and VGG16 classifiers. 

The classifiers then generate pseudo-labels for 

the unlabeled data, which are combined with 

the remaining labeled data to create a new 

dataset. This new dataset undergoes further 

training using both ResNet 18 and VGG16 

classifiers. The methodology is a self-training 

process, starting with a small labeled dataset and 

expanding it with a large unlabeled dataset. The 

loss function includes consistency 

regularization to ensure consistent outputs 

under different input conditions. 

The batch generation process follows a balanced 

sampling strategy. This ensures that both classes 

are represented equally. Increasing the batch 

size improves accuracy but extends the 

execution time. Pre-processing techniques like 

image resizing, scaling, and cropping are 

particularly suited for high-resolution images. 

When training with the labeled dataset, the 

model faces challenges in achieving a high F1 

score due to class imbalance. To address this, a 

weighted sampling approach is used during data 

loading. This helps mitigate the middle-class 

disparity. 

The results show that the self-training semi-

supervised learning approach with ResNet 18 

achieves an accuracy of 96.69% and an F1 score 

of 96.70%. VGG16 reaches an accuracy of 

96.75% with an F1 score of 94.45%. VGG19 

demonstrates even more remarkable 

performance, with an accuracy of 98.63% and 

an F1 score of 98.76%. This study highlights the 

effectiveness of semi-supervised learning with 

ResNet 18 and VGG16 in enhancing model 

accuracy. 

5. Conclusion 

Finding safe landing spots during emergencies 

is a big challenge in the field of drones. Current 

methods use both vision and non-vision 

algorithms but face issues with external factors, 

changing camera angles, and choosing effective 

techniques. This study presents a machine 

learning-based self-training semi-supervised 

learning approach using ResNet18 and VGG16 

classifiers to analyze image data. The Flood Net 

dataset is used for training, resulting in a semi-

supervised model that achieves high accuracy 

and F1 scores with ResNet18 and VGG16. This 

approach is useful when labeled data is limited 

or hard to get. The study also highlights the need 

for more research to improve safe landing 

detection methods, considering terrain, drone 

features, and payload. Future work may involve 
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path planning and obstacle avoidance to ensure 

safe drone landings after identifying a safe 

landing zone and avoiding potential hazards. 
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