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Abstract 

             Early detection of plant diseases helps to prevent loss of productivity and overcomes the shortcomings of 

continuous human monitoring. To solve these problems, many researchers have already completed their work to 

identify the diseases automatically, rapidly, and with greater accuracy using deep learning methods. This research 

combines deep learning with agriculture by developing a system for identifying cotton boll rot. We used two states 

of art pre-trained models SSD with MobileNet-V2 and Faster R-CNN with Inception -V2, which can locate boll 

rot attacks in cotton crops. It will be determined how much damage our crops have sustained. The trained model 

achieved 65% and 89% accuracy, respectively. The accuracy results for disease identification demonstrated that 

the deep network model is prospective and can significantly influence effective disease identification. It may also 

have the potential for disease detection in real-world agricultural systems of interest, region proposal networks, 

convolutional neural networks; deep neural networks; bounding boxes; support vector machines. 
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1. INTRODUCTION 

Pakistan is a primarily agricultural country, 

with approximately 62.82% of the 

population living in rural areas whose 

livelihoods are directly or indirectly tied to 

agriculture, according to the 2021 World 

Bank report. Experts believe Pakistan is an 

excellent location for growing all crops, 

including cotton, ranked as the fifth largest 

cotton producer globally, after Brazil, 

India, China, and the United States (FAO, 

2021). In 2020, cotton and cotton products 

contributed approximately 22.69% to the 

country's GDP. Since cotton is a vital raw 

material in the textile sector, it is essential 

to promptly address any issues related to 

cotton to safeguard the textile industry 

(Rafiq et al., 2021). 

Cotton is a cash crop known as White Gold 

and is King of Fibber and is susceptible to 

several diseases, most of which are caused 

by fungi, bacteria, and viruses. Boll rotting, 

leading to a loss of 20 to 30% of the cotton 

yield, is a common issue. Detecting the 

cotton boll rot disease is crucial to prevent 

a severe outbreak and minimize crop 

losses. Therefore, a new method has been 

proposed for the careful detection of 

diseases and timely handling to avoid 

heavy losses in cotton crops (Saleem et al., 

2021; Mumtaz et al., 2021). 

Detecting and anticipating cotton illnesses 

early and applying appropriate controls are 

crucial for producing high-quality cotton. 

According to estimates from the United 

Nations Food and Agriculture 

Organization, the loss rate of cotton due to 

diseases could be as high as 24%. In 

Pakistan, boll rotting is a relatively new 

cotton disease caused by various fungal 

infections. The disease begins with a small 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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brown or black spot on the boll, eventually 

spreading and covering the entire boll. In 

the early stages, the bolls do not open and 

do not fall off, and in some cases, the 

pericarp gets infected by the decaying stem, 

which can lead to internal tissue infection. 

On infected bolls, various fungi can be 

observed (Latif et al., 2021). 

Despite the prevalence of cotton diseases, 

most farmers in Pakistan still rely on 

traditional farming methods, including 

those for cotton cultivation. This results in 

higher production costs for conventional 

cotton farmers and poorer resource 

utilization (Salman Qadri, 2021). To 

combat this issue, it is essential to adopt 

modern farming techniques that improve 

crop yields and reduce the incidence of 

cotton diseases .(Imran et al., 2018). 

This study aims to develop an efficient 

object recognition and categorization 

system for image data using Convolutional 

Neural Networks (CNNs). First, we review 

the CNN architecture designed for object 

recognition and categorization in image 

data. We also explore several CNN 

architectures developed over the past 

decade. To address the issues of detection 

time and training data availability, we use 

CNNs to generate region proposals for 

localizing and segmenting objects. 

Next, we provide a detailed overview of 

two popular CNN architectures for object 

identification and localization: Faster R-

CNN with Inception-V2 and SSD with 

MobileNet-V2. We discuss their 

architectural elements and fine-tuning 

process and compare their advantages and 

disadvantages regarding detection time, 

network complexity, and training time. 

Finally, we choose the most suitable R-

CNN framework for real-time object 

recognition and localization in an image 

and implement it for the depth estimation 

task.  

2. RELATED WORK 

Detecting plant diseases has been an area of 

research for many years, and in recent 

times, several studies have aimed to 

achieve greater accuracy using advanced 

computing techniques. Here are some 

notable examples: 

Arsenovic et al. (2019) proposed a CNN 

architecture for plant disease classification 

that achieved an accuracy of 93.67% in a 

real-world environment. 

Lim et al. (2019) developed a pollination 

robot that uses Deep Neural Networks to 

recognize kiwi fruit flowers. Their method 

achieved above-average precision, recall, 

and F1-score, with 91%, 87%, and 88% 

values. 

Wang et al. (2019) used deep neural 

networks and object identification models 

to identify tomato diseases. They employed 

Faster R-CNN for disease detection and 

Mask R-CNN for segmentation. 

Guillén-Navarro et al. (2020) tested cross-

validation from a pessimistic perspective, 

validation of 24 hours of temperatures to 

forecast a temperature drop and 

comparison with ARIMA and the Gaussian 

process. Their LSTM-based model 

achieved less than one °C quadratic error 

and 0.95 R2. 

Lin et al. (2020) utilized Faster R-CNN and 

Mask R-CNN to create a knowledge-based 

system identifying plant pests and diseases. 

Their models achieved accuracies of 89% 

and 80%. 

Patel and Patel (2020) used NAS-FPN and 

Faster R-CNN to recognize, localize, and 

classify flowers. Their transfer learning 

model achieved mAP scores of 87.6% and 

an F1 score of 96%. 

Sardoğan et al. (2020) used Faster R-CNN 

with Inception-V2 architecture to identify 

apple leaf disease, achieving an accuracy of 

84.5%. 

Sethy et al. (2020) employed Faster R-

CNN to detect false rice smut, generating 

regional proposal and object detection 

speed up R-CNN. 

Xi et al. (2020) used an improved Faster R-

CNN model to detect potato buds for 

automated seed potato harvesting, 

achieving an AP of 97.71%, 5.98% better 

than the original 14.38% higher than 

YOLO-V2. 
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Yudha Pratama et al. (2020) employed 

Faster R-CNN with an Inception-V2 

algorithm to identify diseases in 

hydroponic plants, achieving 70% 

accuracy, 97% precision, 68% recall, 80% 

F1 Score, and a default learning rate setting 

of 0.0002. 

Vasconez et al. (2020) evaluated Faster R-

CNN with Inception-V2 and SSD with 

MobileNet for the disease identification of 

Lemon and apples under diverse field 

settings. Their models obtained 93% and 

90% fruit counting accuracy, respectively. 

Villacrés and Cheein (2020) used a deep 

neural-based portable artificial vision 

system to improve cherry harvesting 

estimations. Their system achieved an 85% 

accuracy rate in detecting cherries and a 

25% accuracy rate in estimating 

production. 

Zhang et al. (2020) presented an improved 

Faster R-CNN to identify healthy tomato 

leaves and various diseases with an 

accuracy of 2.71% better than Faster R-

CNN and faster than the latter. 

Azath et al. (2021) developed a deep-

learning algorithm to identify cotton leaf 

disease and pests with an accuracy of 

96.4%. One of the most promising 

techniques in this area is deep learning-

based image analysis, which has led to the 

development of several high-performance 

models for plant disease detection.  

Ferrag et al., (2021) proposed a deep 

learning-based DDoS intrusion detection 

system that uses convolutional, deep, and 

recurrent neural networks.  

Similarly, (Hassan et al., 2021) established 

CNN models to detect plant disease from 

leaves, demonstrating higher accuracy than 

traditional techniques. 

Additionally, Kumar et al. (2021) 

presented machine learning algorithms and 

image processing methods for identifying 

cotton leaf disease, with their models 

achieving an accuracy of 89%.  

Other researchers, such as Luaibi et al., 

(2021) and (Mostafa et al., 2022) have also 

reported impressive results in using neural 

networks for plant disease detection. These 

recent developments in deep learning 

research demonstrate that machine 

learning-based methods can be powerful in 

plant disease detection and analysis.  

In addition to these works, there have been 

many other successful deep-learning 

applications in various fields. For example, 

Shah et al. (2022) developed a deep 

learning-based face recognition system that 

achieved state-of-the-art performance on 

the Labelled Faces in the Wild (LFW) 

dataset. Xu et al. (2020) proposed a deep 

learning-based approach for detecting and 

classifying melanoma skin lesions, which 

outperformed dermatologists in a study 

conducted on the ISIC dataset. Khan et al. 

(2021) used deep learning to see fake news 

and achieved a high accuracy rate of 93% 

on a dataset of news articles. Ma et al. 

(2021) developed a deep learning model for 

predicting the toxicity of chemicals, which 

outperformed traditional QSAR models. 

Finally, He et al. (2021) proposed a deep 

learning-based approach for detecting and 

classifying diabetic retinopathy, achieving 

high accuracy rates on multiple datasets. 

These examples illustrate the versatility 

and power of deep learning in solving a 

wide range of problems. With further 

research and development, deep learning 

will likely continue to play an increasingly 

important role in many fields, including but 

not limited to computer vision, natural 

language processing, and robotics. 

The development of advanced deep 

learning techniques has revolutionized the 

field of plant disease detection by enabling 

more accurate and efficient analysis of 

plant health. These methods involve 

training deep neural networks using large 

datasets of plant images, which can 

recognize patterns and features associated 

with different types of plant diseases. 

Unlike traditional computer vision 

methods, which require specialized 

knowledge and expertise, deep learning 

approaches can automate the analysis 

process and deliver results with a higher 

success rate. As a result, plant disease 

identification has become the primary 
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analytical method for assessing the health 

of plants, helping farmers and researchers 

to detect and prevent the spread of disease 

more effectively. 

3. MATERIALS AND METHODS 
3.1 Implementation Details 

The research team used state-of-the-art 

hardware and software to conduct their 

experiments in this study. Specifically, they 

used 8th Generation Core i7 Quad-Core 

Processors with 8 GB RAM, 8 GB 

NVIDIA, and an SSD hard drive with 520 

GB of storage capacity to ensure that their 

system could handle the large amounts of 

data involved in the research. 

The researchers followed a rigorous six-

phase process to analyse their dataset, 

starting with the acquisition of images of 

both affected and non-affected cotton bolls 

in the field. Once the images were 

collected, they were pre-processed and split 

into training, validation, and testing sets. 

Experts in the field then labelled the dataset 

to ensure the images were classified 

correctly. Finally, the researchers trained 

their model using two different 

architectures: SSD MobileNet-V2 and 

Faster R-CNN Inception-V2. 

To improve the performance of their 

model, the researchers introduced several 

new hyperparameters, including anchor 

initialization, the maximum number of 

bounding boxes, and learning rate decay. 

Anchors were placed every 16 pixels on the 

feature map, and each pixel had nine 

anchors created using three different scales 

and three height-width ratios. The 

researchers used RPN to select foreground 

labels for anchors that overlapped with the 

ground-truth boxes by more than 0.60 

percent and RPN to choose anchors that 

coincided with every ground-truth box by 

less than 0.40 percent of the total area. 

3.2 Dataset Collection  

The researchers used a specific method to 

collect high-resolution images of cotton 

bolls directly without relying on web 

scraping techniques to gather their dataset. 

They used a Nikon 2000D DSLR camera 

with a bit depth of 24 and a 29761984-pixel 

size to capture the images, which were then 

reduced in resolution to 640640 pixels to 

make them more manageable for training. 

The images were taken from various 

perspectives and focal lengths. Four 

hundred eighty-seven images were 

gathered from the University of Agriculture 

Faisalabad's main campus on September 17 

and 20, 2021, between 9:00 a.m. and 1:30 

p.m.). 

3.3 Data Augmentation 

We applied CNN-based data augmentation 

techniques to address the class imbalance 

issue in the training set. These techniques 

Figur.1: Flow diagram of the proposed methodology 
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aim to increase the model's generalization 

ability and prevent overfitting. Before 

augmentation, the training set had a 

significant class imbalance problem, where 

the three categories accounted for 70% of 

the training samples. In contrast, the 

remaining 30% belonged to the testing and 

validation sets. We used data augmentation 

techniques such as flipping, rotating, 

scaling, and cropping to overcome this 

issue and generate additional training 

samples. This resulted in a more balanced 

distribution of samples across the three 

categories, with each type having an equal 

representation in the training set. This 

approach helped improve the accuracy and 

generalization ability of the model. 

 

Figure 2:  Dataset splitting ratio 

3.4 The Proposed Learning Framework  

3.4.1 Model 1: Faster R-CNN with 

Inception-V2 

Our study employed LabelImg software to 

label and annotate the images. The software 

allowed us to draw bounding boxes around 

the cotton bolls and assign them to their 

categories. The images were divided into 

two folders, one for affected and the other 

for non-affected cotton bolls. The Faster R-

CNN algorithm was used as the primary 

detection model. The algorithm comprises 

two stages: the Region Proposal Network 

(RPN) and the region classifier. The RPN 

generates rectangular regions that could 

contain objects, which are then classified 

by the region classifier. The RPN predicts 

both the objectness of an image and its 

bounding box coordinates, taking 

information from all the anchors to propose 

a set of bounding boxes. The box proposals 

are then processed to extract crop feature 

maps, fed through the remaining feature 

extractor layers to determine class 

probability and bounding box coordinates. 

The RPN system evaluates whether an 

anchor contains an object or not based on 

the Intersection-over-Union (IoU) between 

the object proposals and the ground truth. 

An all-in-one network that shares full-

image convolutional characteristics with 

the detection network provides almost free 

region proposals, as per the work of 

(SARDOĞAN et al., 2020). Our model was 

trained using CNN-based data 

augmentation techniques to increase its 

generalization ability and prevent 

overfitting. Before augmentation, the 

training set had a class imbalance problem, 

with the three categories accounting for 

70% of training, 20% of testing, and 10% 

of validation, respectively (Akbar et al., 

2020). 

The Inception-V2 model was introduced in 

2016 and significantly improved over the 

previous versions. It used factorization into 

smaller convolutions and improved 

architecture, including better use of 

pooling, smaller filters, and enhanced 

factorization. This made the Inception-V2 

model more computationally efficient and 

enabled it to achieve higher accuracy than 

its predecessors. The Inception models 

have been widely used in various computer 

vision tasks and have achieved state-of the-

art results in many benchmark datasets 

(Sivakumar et al., 2020). 

The Inception architecture has undergone 

several improvements since its inception, 

with Inception-V2 being one of them. One 

of the notable enhancements in Inception-

V2 is incorporating a region proposal 

network (RPN) to improve object detection 

accuracy. The RPN is responsible for 

generating region of interest (ROI) 

proposals from the feature map created by 

the Inception-V2 backbone network 
(Mehmood and Zulfqar, 2021). 

These ROI proposals are refined through 

bounding box regression and classified 

using a separate set of fully connected 

layers. The refinement process includes 

adjusting the bounding box coordinates and 

predicting the objectness probability of 

each ROI proposal. This process enables  
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the network to localize objects within an 

image and classify them accordingly 

accurately. 

In addition to the RPN, Inception-V2 

employs a suppression algorithm to reduce 

the number of bounding boxes generated by 

the network. This algorithm removes 

highly overlapping bounding boxes, 

resulting in a more compact set of bounding 

boxes that accurately represent the objects 

in the image. Combining the Inception-V2 

Figure 3: SSD with MobileNet-V2 Framework 

Figure 4: Faster R-CNN with Inception-V2 architecture 
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backbone network, RPN, and suppression 

algorithm makes it a powerful tool for 

object detection tasks. 

3.4.2 Model 2: SSD with MobileNet-V2 

While the Inception-V2 model extracts 

feature using a feature map and fully 

connected layers, the Single Shot Detector 

(SSD) proposed by Liu et al. achieves 

object detection using a single network 

pass. By adding convolutional layers to 

VGG-16's backbone network, SSD can 

extract features at various scales while 

reducing input size. Multi-level feature 

maps enable SSD to identify object aspects 

across different scales, with low-level maps 

having a smaller receptive field than high-

level maps. To separate feature units on the 

same layer, SSD employs a box mechanism 

and various configurations, with maps of 

different scales using default boxes with 

different dimensions and aspect ratios 

(Mahmood et al., 2019). 

SSD MobileNet is a lightweight solution to 

object detection, with each convolutional 

layer followed by a Batch normalization 

and ReLU layer. Model developers can 

adjust the width and resolution multipliers 

and the number of feature maps to optimize 

the trade-off between latency and accuracy. 

Furthermore, Deep-wise Separable 

Convolution can decompose and calculate 

standard kernels to reduce computation 

time. This approach uses a separable 

convolution that can be split into two 

halves according to depth, with the outputs 

being mixed following the depth-wise 

convolution of the input channels. 

Overall, the SSD model is a practical 

approach to object detection, with the SSD 

MobileNet, offering a lightweight solution 

that can be customized to balance accuracy 

and computation time. The SSD model can 

accurately identify and classify objects 

across various scales and contexts by 

incorporating multi-scale attribute 

modelling and utilizing different 

configurations and mechanisms, such as 

default boxes and separable convolutions. 

The MobileNet V2 model for object 

detection uses a novel approach of utilizing 

two 1D convolutions with two kernels each 

instead of a single 2D convolution. 

Separating downscaling blocks from the 

remaining blocks with strides of 1 or 2 

allows for more efficient feature extraction. 

Each block consists of three convolution 

layers: the ReLU6 11 convolution, the deep 

convolution, and a non-linear 11 

convolution. Additionally, MobileNet V2 

introduces a bottleneck shortcut link and a 

linear bottleneck between layers. The 

bottleneck shortcut link and linear 

bottleneck enable the transformation of 

pixel-level concepts into higher-level 

descriptors by encapsulating intermediate 

inputs and outputs. 

SSD with MobileNet-V2 utilizes 

MobileNet-V2 as a feature extractor and 

multi-scale learning layers to extract 

features. The convolution replaces the 

combination, requiring fewer parameters to 

detect an item. Data augmentation is 

employed to train images in different 

dimensions, and a convolution filter is used 

to obtain the output image. Using these 

techniques, the SSD MobileNet V2 model 

achieves high accuracy while being 

computationally efficient, making it a 

popular choice for object detection tasks in 

applications with resource constraints. 

4. RESULTS  

The research utilized an augmented dataset 

of data collected from the field to evaluate 

the effectiveness of different pre-trained 

CNN models for object detection of cotton 

boll rot disease. The performance of 

various object detection models was 

assessed using the dataset, and colourful 

boxes were used to indicate prediction 

bounding boxes. In contrast, a red box with 

squiggly lines inside was used to denote the 

label for the ground truth. By comparing 

the results obtained from different pre-

trained CNN models, the researchers could 

determine which model was most effective 
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for identifying the disease. This approach 

allowed for a comprehensive assessment of  

the accuracy and efficiency of various 

object detection models and provided 

valuable insights for future research in this 

area. Overall, using augmented datasets 

and pre-trained CNN models can 

significantly improve the accuracy and 

efficiency of object detection for a wide 

range of applications, including disease 

identification in crops. 

4.1 Quantitative Analysis 

 The evaluation of object detection models 

is crucial to determine their effectiveness in 

real-world applications. In this study, the 

commonly used performance metrics for 

object detection, including mean average 

precision (mAP), average precision (AP), 

and average recall (AR), were employed. 

The mAP is calculated based on the 

Intersection over Union (IOU) of the 

predicted and ground truth bounding boxes. 

Precision and recall are other important 

performance measures. Precision is 

computed by dividing the number of true 

positives by the number of predicted 

positives, and recall is the ratio of true 

positives to false positives. The precision-

recall curve calculates the interpolated 

precision, and the average accuracy is 

determined by computing the area under 

the curve. The inference speed in frames 

per second was measured to assess the real-

time detection capabilities of the models. 

The recall rate, which indicates the model's 

ability to recognize positive samples, was 

also calculated. The proposed models, 

Faster R-CNN with Inception-V2 and SSD 

with MobileNet-V2 with 100 proposals, 

achieved the highest performance with 

mAP values of 0.89 and 0.65, respectively, 

and AR values of 0.91 and 0.63, 

respectively. Table 1 summarizes the 

accuracy and recall rates of the different 

detection models evaluated in this study. 

 Precision=
True Positive 

True Positive+False Positive 
 (1) 

Mean Average Precision= 
True Positive+False Negative 

True Positive+False Positive+True Negative+False Negative 
(2) 

Recall =
 True Positive 

True Positive+ False Negative 
 

  (3) 

4.2 Qualitative Analysis  

A function called intersection over union 

can be used to calculate an image's IoU. 

Intersection over union (IoU) is a 

commonly used performance metric for 

evaluating object detection models. It 

measures the overlap between two 

bounding boxes, the ground-truth bounding 

box, and the predicted bounding box. The 

IoU is calculated by dividing the area of 

their intersection by the area of their union. 

This value ranges from 0 to 1, where a 

higher value indicates a better overlap 

between the two boxes. In other words, IoU 

measures how well the predicted box aligns 

with the ground-truth box. The following 

two parameters are accepted: 

 Ground-truth bounding box 

 Bounded box predicted by 

prediction box. 

When two boxes in the intersection and 

union variables intersect, it computes the 

intersection and union of those two points 

on the graph. We employ Intersection over 

Union for object detection (IOU). The 

meeting of the two bounding boxes is 

computed using a Jaccard index-based 

algorithm, which calculates the union of 

these two bounding boxes. As a result, a 

perfect overlap would be 1. The prediction 

may be either positive or negative when 

Table 1: Results analysis of proposed object detection models 

Model 
Training 

duration 
Batch Size 

No. of 

training 

steps 

AP mAP AR IoU 

Faster RCNN Inception-

V2 
3 Hours 4 14000 89% 89% 91% 0.50:0.90 

SSD MobileNet-V2 8 Hours 4 50000 65% 65% 63% 0.50:0.90 
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using a threshold value. Let's imagine the 

IOU threshold is set at 0.5. 

 If an IOU is more significant than 0.5, 

the object detection is classified as True 

Positive. 

 If an IOU is less than 0.5, the detection 

is incorrect, and the result is classified 

as a False Positive. 

 

Figure 5: Intersection over Union 

 

Figure 6: Performance of object detection models for 

cotton bolls rot dataset for Faster R-CNN with Inception-

V2 and SSD with MobileNet-V2 

In the above diagram, the trained model 

detected the cotton bolls and draw a 

bounding box around the object, it 

identified the cotton bolls and classify the 

cotton bolls as affected and non-affected. 

4.3 Graphically Analysis  

Visualization methods help assess model 

training success. Visualizing semantic 

model elements helps engineers understand 

the model's output. TensorBoard provided 

visualization and machine learning tools. 

Localization refers to detection of object and 

drawing the bounding box around an object 

in an image. This graph shows the 

localization loss, at horizontal axis, steps are 

presented and at vertical axis, loss is 

presented in points. Classification loss refers 

to the loss during training the model fails to 

classify a vehicle. This graph represents the 

classification loss with respect to steps. In 

this graph, loss is represented on different 

steps during training of Model. At horizontal 

axis, steps are presented and at vertical axis, 

loss is represented in points. The learning 

rate shows how quickly the model is adapted 

to the problem. This graph shows the 

learning rate of model trained for this 

research. 

 

 

 
Figure 7: Histograms of the (a) learning rate, (b) 

localization loss, (c) total loss, (d) classification loss 

of model Faster R-CNN with Inception-V2. 

The number of iterations influences the 

performance of deep learning models 

during training. For instance, Faster R-

CNN Inception-V2 was trained for 14000 

iterations, while SSD MobileNet-V2 was 

trained for 50000 iterations, as indicated in 

Figures 7 and 8. The learning rate becomes 

more stable with an increase in the number 

of iterations. In this study, we observed that 

both models learned features effectively, 

with strong convergence ability, which has 

the potential to yield desired results. 

Figures 7 and 8 illustrate the localization, 

total, and classification loss for Faster R-

CNN Inception-V2 and SSD MobileNet-

V2, respectively. At the beginning of the 

training process, the losses were high for 

both models, but they reduced gradually 

with each iteration. Faster R-CNN 

Inception-V2 achieved better detection 

with lower loss compared to SSD 

MobileNet-V2. 
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Figure 8: Histograms of the (a) learning rate, (b) 

localization loss, (c) classification loss, and (d) total 

loss of model SSD with MobileNet-V2 

5. DISCUSSION 

In the abovementioned experiment, we 

contrast the performance of various models 

and our suggested methods with other 

traditional target detection models. The 

effectiveness of each algorithm is 

determined in the table below: For several 

algorithms, Table 2 displays the FPS, the 

number of parameters, and the 

computational complexity. The model can 

be used for academic study by students and 

scientific algorithm research. However, it is 

still a long way from applications in 

agriculture. The algorithm still requires 

work to enhance its real-time performance. 

Another drawback is that the algorithm is 

only highly accurate for the species being 

taught now. They need to be retrained if the 

plants that need to be anticipated are not 

mentioned in this study. 

On the other hand, the algorithm works 

better when it is solely used to identify 

diseases in the same plant. To prevent 

individual differences from affecting the 

final detection results and improve the 

generalizability of the algorithm proposed 

in this paper, we simultaneously add 

images of individual differences of the 

same plant to the data enhancement 

process. This is done because individual 

differences can occur in the same plant 

growing in various environments. The 

algorithm suggested in this research can 

identify plant diseases early on and perform 

prompt corrective action, which lowers 

production costs. At the commercial level, 

it is evident that initial capital investment in 

the chosen method is necessary. Broadly 

used industrial applications, however, can 

yield great returns by significantly 

enhancing process efficiency and cutting 

costs. This is the algorithm's significance. 

The object detection technique, Faster 

RCNN, uses regions to identify the items. 

The Faster RCNN network adopts a region-

based approach that divides the input image 

into subregions called proposals, then 

performs object detection on each proposal. 

However, this strategy poses two 

challenges. First, to cover all possible 

objects, the model needs to process 

multiple proposals per image, which 

increases the computational cost and slows 

Table 2:  Results comparison from previous studies in agriculture 
Researcher 

Name 
Crop 

No. of 

Images 
Image Size Method 

Detection 

Rate 

No. of  

Iterations 

[Gao et al.] Apple 800 1920*1080 
Faster RCNN  

VGG16 
85% 100k 

[Patel et al.] Flower 8000 416*416 

Faster RCNN 

ResNetV2 

InceptionV2 

86% 80K 

[Sardogan et al.] Apple 700 224*224 
Faster RCNN 

 InceptionV2 
84% 50k 

[Yudha et al.] Lettuce 873 3264*2448 
Faster RCNN  

InceptionV2 
69% 7k 

[Vasconeze et 

al.] 

Apple 

Lemon 

1076 

943 
360*640 

Faster RCNN 

InceptionV2 

SSD 

MobileNet 

77% 

57% 

70k 

40k 

Proposed 

Method 
Cotton 487 640*640 

Faster RCNN 

InceptionV2 

SSD 

MobileNetV2 

89% 

65% 

14k 

50k 
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down the detection speed. Second, since the 

proposal generation and object 

classification tasks are performed 

sequentially, the accuracy and efficiency of 

the later tasks can be affected by the quality 

and quantity of proposals generated in the 

earlier tasks. In particular, the proposal 

generation process involves multiple 

parallel systems, and the preceding 

system's performance can influence each 

system's performance. Therefore, 

optimizing the proposal generation process 

is critical for achieving fast and accurate 

object detection with Faster RCNN. 

It is important to consider the 

computational resources required to 

optimize the deployment of deep learning 

models. Faster RCNN with Inception V2 is 

known for its high computational 

requirements, making it suitable for 

deployment on GPUs. However, deploying 

such models at scale can be prohibitively 

expensive, making it necessary to consider 

more efficient alternatives. One alternative 

is SSD with MobileNet V2, designed to be 

more computationally efficient than Faster 

RCNN. Despite this, even the 5 x 5 

convolutional layer in SSD with MobileNet 

V2 can be computationally intensive, 

requiring significant processing power and 

time. 

6. CONCLUSION 

Our experiments show that deep learning 

models performed well in object detection, 

with our framework able to identify cotton 

boll rot even with few samples. Of the two 

models compared, Faster R-CNN 

Inception-V2 outperformed SSD 

MobileNet-V2 regarding accuracy and 

training speed. However, both models 

require significant computational power 

and may be expensive to scale. We found 

that a training set of 489 images yielded 

promising results, but using a more 

extensive and diverse dataset may improve 

detection rates. Additionally, future 

research should focus on detecting diseases 

in different plant parts and stages. Our 

model may have practical applications as 

part of a decision-support system or mobile 

app for detecting cotton boll rot diseases. 

While Faster R-CNN Inception-V2 

required 2.8% more computation per frame 

than SSD MobileNet-V2, both models 

achieved high levels of accuracy, with the 

trained model achieving 89% and 65% 

accuracy, respectively. However, we 

observed that SSD MobileNet-V2 

produced more false negatives, an 

important consideration in object detection. 
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